
Monatshefte f€uur Chemie 135, 765–772 (2004)

DOI 10.1007/s00706-004-0170-1

Dependence of Total p-Electron Energy
on the Number of Non-Bonding
Molecular Orbitals

Ivan Gutman�, Nataša Cmiljanović, Svetlana Milosavljević,
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Summary. In recent work [Gutman et al. (2004) Chem Phys Lett 383: 171] a method was developed

by means of which the influence of non-bonding molecular orbitals (NBMOs) on the value of total �-

electron energy (E) can be separated from the multitude of other molecular-structure-dependent effects.

We now extend this method and establish the relation between E and the number n0 of NBMOs. It is

shown that E (when computed within the HMO approximation, and expressed in the units of the HMO

resonance integral �) is a decreasing function of n0, and that the dependence of E on n0 is almost

perfectly linear.
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Introduction

The dependence of total �-electron energy (and therefore of thermodynamic sta-
bility) on molecular structure seems to be a perennial problem and topic of
research in the theory of conjugated molecules. The first results along these lines
were obtained good half a century ago (e.g., [1–4]), but research in the same
direction is still going on (for instance, [5–10]). The popularity of this theme
may lie in the facts that (a) the structure-dependence of total �-electron energy
is rather complex and far from being trivial, but (b) the underlying mathematical
formalism is much simpler than in the case of other quantum-chemical �-electron
properties, enabling one to formulate and (sometimes) rigorously prove generally
valid regularities.

In this work (as well as in Refs. [1–10]) it is assumed that the total �-electron
energy is computed within the H€uuckel molecular orbital (HMO) approximation
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[11, 12] and expressed in the units of the resonance integral �. This quantity will be
denoted by E. Bearing in mind that � is a negative-valued constant, any structural
factor that increases (resp. diminishes) E, causes thermodynamic stabilization
(resp. destabilization) of the corresponding conjugated molecule.

In HMO-theoretical considerations it is advantageous to use graph theory [12–
14]. If so, then E¼E(G), where G is the respective molecular graph. Therefore, in
what follows we speak about the dependence of E on the structure of the molecular
graph G (recall that the number of vertices and edges of G are equal to the number
of carbon atoms and carbon–carbon bonds, respectively, of the underlying conju-
gated molecule [12, 14]).

The main structural factors determining E have been identified. These are the
following:

* The gross part (over 99%) of E is determined by the size of the molecular graph,
i.e., by the parameters n (¼ number of vertices) and m (¼ number edges)
[15, 16]. In order to evade this effect it is customary to examine E within sets
of isomeric conjugated species (in which n and m have fixed values).

* The next-important structural features are the cycles, both their number, size,
and mutual arrangement [17, 18]; their rather complicated effects are nowadays
understood only to a limited extent. A direct consequence of the presence of
cycles is the existence of a large number of Kekul�ee-type structural formulas. The
relation between E and the Kekul�ee structure count has been much investigated
(especially in the case of benzenoid hydrocarbons [19–21]), but – again – the
problem is not completely solved [22]. Evidently, in order to be able to disregard
the effect of cycles on E one has to consider acyclic systems (whose molecular
graphs are referred to as trees).

* In acyclic conjugated systems (with fixed n and m¼ n� 1) the dominant effect
influencing E is the extent of branching of the carbon-atom skeleton [23, 24]. It
is well established that branching decreases E; e.g., among n-vertex trees the
unbranched path and the maximally branched star have minimum and maximum
E-values, respectively [25]. However, quantitative relations between E and
branching have never been reported, perhaps because there exists no unique
numerical measure of (what intuitively is regarded as) ‘‘branching’’ [26–28].
Anyway, empirical observations show that E depends in a complicated manner
on the number of branching points, their degrees, their location in the (acyclic)
molecular graph, and their mutual constellation.

* In this work we are concerned with the (diminishing) effect of non-bonding
molecular orbitals (NBMOs) on total �-electron energy. This effect was also
recognized long time ago [12, 24, 29], but could not be properly quantified.
The main obstacle seems to be the fact that the presence and number of NBMOs
is much influenced by branching. In particular, acyclic systems with large num-
ber of NBMOs are necessarily highly branched, although the opposite is not
true – highly branched acyclic species may possess no NBMOs. Consequently, it
is difficult to separate the effect of branching from the effect of NBMOs.

In what follows we denote the number of NBMOs by n0¼ n0(G). As well known
[12–14], n0(G) is equal to the number of zero eigenvalues of the molecular graph G.
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In order to quantitatively determine the effect of NBMOs on E we have recently
developed a pertinent method [10]. We considered molecular graphs PN(j),
obtained by attaching a pendent vertex to the j-th vertex of an N-vertex path PN

j¼ 2,3, . . . ,N–1, cf. Fig. 1. These molecular graphs have a fixed number of vertices
(¼Nþ 1) and edges (¼N), possess no cycles, have a single branching point, and
thus similar branching patterns. If, in addition, N is chosen to be sufficiently large,
and the site j sufficiently distant from the terminal vertices of the N-vertex chain,
then the effects of branching in PN(j) become independent of j. On the other hand,
if N is odd, then the number of NBMOs of PN(j) depends on the parity of j:
n0(PN(j))¼ 0 for j¼ 3, 5, 7, . . . and n0(PN(j))¼ 2 for j¼ 2, 4, 6, . . . . Consequently,
if N is chosen to be sufficiently large, and the site j sufficiently distant from the
terminal vertices of the N-vertex chain, then in the difference E(PN(jþ 1))�
E(PN(j)) all (known) effects influencing the total �-electron energy, except the
effect of NBMOs, will cancel out. Consequently, E(PN(jþ 1))�E(PN(j)) can be
viewed as the effect of two NBMOs on E. Further details are found in Ref. [10].

The obvious questions at this point are: What can one say about the effect of
NBMOs in the case when n0 is not equal to two? What is the effect of n0 NBMOs
on total �-electron energy, if n0¼ 1, 2, 3, . . .? In this work we offer answers to
these questions.

Results and Discussion

A Model with Variable Number of NBMOs

The tree with n vertices, in which no vertex has a degree greater than two is called
the path and is denoted by Pn. The path Pn is the least branched n-vertex tree,
because it possesses no branching point at all.

The molecular graphs used for the calculation of the effect of n0 on E are denoted
by PN(j1, j2, . . . , jk) and have the structure shown in Fig. 1. This graph is obtained

Fig. 1. The N-vertex path (PN) and the molecular graph PN(j1, j2, . . . , jk) studied in this work;

according to the notation indicated, the tree PN(j1, j2, . . . , jk) has Nþ k vertices, where

N¼ a0þ a1þ a2þ � � � þ akþ k; for further details see text; note that if k¼ 1, then PN(j1, j2, . . . , jk)

reduces to the previously studied [10] molecular graph PN(j)
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from the N-vertex path PN (see Fig. 1), by attaching to it k pendent vertices (denoted
by x1, x2, . . . , xk) at positions j1, j2, . . . , jk. With the notation indicated in Fig. 1,

j1 ¼ a0 þ 1

j2 ¼ a0 þ a1 þ 2

j3 ¼ a0 þ a1 þ a3 þ 3

..

. ..
.

jk ¼ a0 þ a1 þ a2 þ � � � þ ak�1 þ k

9>>>>>=
>>>>>;

ð1Þ

and

N ¼ a0 þ a1 þ a2 þ � � � þ ak þ k: ð2Þ
In Fig. 1 by ai is denoted the number of vertices of PN(j1, j2, . . . , jk), lying

between the vertices ji and jiþ 1, i¼ 1, 2, . . . , k� 1. In addition a0 and ak are the
number of vertices lying left from j1 and right from jk, respectively. In view of
Eqs. (1) and (2),

a0 ¼ j1 � 1

ai ¼ jiþ1 � ji � 1; i ¼ 1; 2; . . . ; k � 1

ak ¼ N � jk:

From Fig. 1 we see that by deleting from PN(j1, j2, . . . , jk) the pendent vertices
x1, x2, . . . , xk and their first neighbors j1, j2, . . . , jk, a collection of k þ 1 paths
Pa0

;Pa1
;Pa2

; . . . ;Pak will be obtained. Let !(a0, a1, a2, . . . , ak) among these paths
possess an odd number of vertices.

Let, as before, n0(G) denote the number of zero eigenvalues of the graph G. A
long-known result on zero eigenvalues is the following [13, 31]: If x is a pendent
vertex of the graph G, adjacent to vertex j, then

n0ðGÞ ¼ n0ðG� x� jÞ: ð3Þ
By a repeated application of Eq. (3), and bearing in mind that n0(P1)¼ 1,
n0(P2)¼ 0, we immediately obtain the well known result:

n0ðPaÞ ¼
1 if a is odd

0 if a is even:

�
ð4Þ

Applying Eq. (3) consecutively to the vertices x1, x2, . . . , xk of PN(j1, j2, . . . , jk) we
see that the number of zero eigenvalues of PN(j1, j2, . . . , jk) is equal to the number
of zero eigenvalues of the collection of paths Pa0

;Pa1
;Pa2

; . . . ;Pak , which – in view
of Eq. (4) – is equal to !(a0, a1, a2, . . . , ak).

The basic idea of our method lies in the observation that if the vertex xi in
PN(j1, j2, . . . , jk) is shifted by one (either to the left or to the right), then the parity of
the numbers ai� 1 and ai is changed and, consequently:

� if both ai� 1 and ai are even, then n0 increases by two,
� if both ai� 1 and ai are odd, then n0 decreases by two, and
� if ai� 1 and ai have different parities, then n0 remains the same.

By pertinently shifting several of the vertices x1, x2, . . . , xk one can significantly
change the value of n0. If, in addition, the branching points j1, j2, . . . ,jk are
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positioned sufficiently far from each other, and sufficiently far from the terminal
vertices of the path PN, then the respective energy-differences can be assumed to be
caused solely by the variations of n0-values. What is meant under ‘‘sufficiently far’’
is explained below.

In particular, we have constructed the graphs PN(j1, j2, . . . , jk) by attaching six
pendent vertices (k¼ 6) to the paths P174 and P175. Depending on the actual posi-
tion of the pendent vertices we have n0¼ 0, 2, 4, 6 (in the case N¼ 174) and n0¼ 1,
3, 5, 7 (in the case N¼ 175).

It is known [10, 23] that in molecular graphs of the type PN(j) and PN(j1,
j2, . . . , jk) the energy-effects caused by the branching points depend on the distance
between the nearest branching points, and also on the distance between the branch-
ing points and the terminal vertices of PN. These interferences diminish with
increasing distance and gradually become negligibly small [10, 23]. In order to
eliminate any possible influence of the number of NBMOs, we have examined
the differences in the E-values of the graphs PN(j1, j2, . . . , ji, . . . , jk) and
PN(j1, j2, . . . , ji� 2, . . . , jk) because (as explained above) they necessarily have
equal n0-values.

In view of the fact that HMO total �-electron energies give chemically sound
results only up to 0.01 � [11–14], our criterion that two neighboring branching
points are ‘‘sufficiently far’’ from each other was chosen to be

jEðPNðj1; j2; . . . ; ji; . . . ; jkÞÞ � EðPNðj1; j2; . . . ; ji � 2; . . . ; jkÞÞj � 0:005: ð5Þ

Table 1. The systems PN(j1, j2, . . . , j6) examined (cf. Fig. 1), the number of NBMOs (n0) and total �-electron energy (E);

note that n0 is equal to the number of odd-valued parameters ai, i¼ 0, 1, . . . , 6; species having equal numbers of NBMOs

insignificantly differ in their E-values

N (j1, j2, j3, j4, j5, j6) a0 a1 a2 a3 a4 a5 a6 n0 E

174 (25, 50, 75, 100, 125, 150) 24 24 24 24 24 24 24 0 227.1087

(24, 50, 75, 100, 125, 150) 23 25 24 24 24 24 24 2 226.9954

(26, 50, 75, 100, 125, 150) 25 23 24 24 24 24 24 2 229.9958

(25, 49, 75, 100, 125, 150) 24 23 25 24 24 24 24 2 226.9995

(25, 51, 75, 100, 125, 150) 24 25 23 24 24 24 24 2 226.9995

(24, 50, 74, 100, 125, 150) 23 25 23 25 24 24 24 4 226.8860

(24, 50, 75, 100, 125, 151) 23 25 24 24 24 25 23 4 226.8821

(24, 50, 74, 100, 125, 151) 23 25 23 25 24 25 23 6 226.7727

(26, 50, 76, 100, 126, 150) 25 23 25 23 25 23 24 6 226.7770

175 (25, 50, 75, 100, 125, 150) 24 24 24 24 24 24 25 1 228.3250

(25, 50, 75, 100, 125, 151) 24 24 24 24 24 25 24 1 228.3287

(24, 50, 75, 100, 125, 150) 23 25 24 24 24 24 25 3 228.2117

(25, 49, 75, 100, 125, 150) 24 23 25 24 24 24 25 3 228.2121

(24, 50, 75, 100, 125, 151) 23 25 24 24 24 25 24 3 228.2154

(24, 50, 74, 100, 125, 150) 23 25 23 25 24 24 25 5 228.1023

(24, 50, 74, 100, 125, 151) 23 25 23 25 24 25 24 5 228.1060

(26, 50, 76, 100, 126, 150) 25 23 25 23 25 23 25 7 227.9931

(24, 50, 74, 100, 126, 150) 23 25 23 25 25 23 25 7 227.9927
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Numerical testing showed that the minimum such distance depends both on the value
and parity of N and on the actual (but constant!) value of n0. In all cases, however, the
distance equal to 20 was sufficient for the validity of Eq. (5). This, in turn, means that
each of the parameters a0, a1, a2, . . . , ak (cf. Fig. 1) needs to be 20 or greater. To be on
the safe side, we have employed slightly greater ai-values, see Table 1.

Numerical Work

For technical reasons the number of vertices of the graphs PN(j1, j2, . . . , jk), equal to
Nþ k, had to be below 185. Therefore, we used as the starting system the graphs
PN(j1, j2, . . . , jk) with k¼ 6, N¼ 174, and a0¼ a1¼ � � � ¼ a6¼ 24 (for which !(a0,
a1, . . . , a6)¼ 0 and therefore n0¼ 0), as well as with k¼ 6, N¼ 175, and
a0¼ a1¼ � � � ¼ a5¼ 24, a6¼ 25 (for which !(a0, a1, . . . , a6)¼ 1 and therefore
n0¼ 1). By pertinently varying (j1, j2, . . . , jk) we could then achieve that n0 assumes
all (integer) values between 0 and 7. Details are given in Table 1.

What first needs to be observed in Table 1 is that the E-values pertaining to the
trees PN(j1, j2, . . . , jk) with equal n0 are practically equal, differing by much less
than 0.01 �. This detail corroborates the validity of the model employed.

There exists an excellent linear correlations between E and n0. The data given
in Table 1 satisfy the following regression lines: for N¼ 174,

E ¼ 227:109 � 0:0558 n0 and n0 ¼ 0; 2; 4; 6

whereas for N¼ 175,

E ¼ 228:381 � 0:0555 n0 and n0 ¼ 1; 3; 5; 7

with correlation coefficients �0.99981 and �0.99987, respectively.
For trees with N¼ 175 the E-values are significantly greater than in the case of

N¼ 174. This is a direct consequence of the fact that the former trees possess 181,
whereas the latter only 180 vertices. Therefore, the calculated E-values for even

Fig. 2. Correlation between total �-electron energy (E) and the number of non-bonding molecular

orbitals (n0) for the systems PN(j1, j2, . . . , jk) specified in Table 1; for odd n0 the E-values are reduced

by 1.2724; the regression line thus obtained is (227.108 � 0.001) – (0.0556 � 0.0002) n0 with

correlation coefficient �0.99984
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and odd n0 cannot be directly compared. Fortunately, however, the slopes of the
two regression lines are practically identical. This makes it possible to combine
the two data sets, by subtracting 1.2724 from the E-values with odd n0, resulting in
the line shown in Fig. 2.

Conclusion

The model elaborated in this work enables us, for the first time, to quantitatively
assess the effect of non-bonding molecular orbitals on total �-electron energy. This
effect happens to decrease E (and thus to destabilize the respective molecule) and
is linearly proportional to the number of NBMOs.

In order to ‘‘extract’’ the influence of NBMOs from other structural effects, we
pursued the following strategy:

* The systems whose E-values were compared had equal number of vertices (n)
and edges (m¼ n� 1). By this size-dependent effects could be disregarded.
Exceptionally, because the parity of n0 is the same as the parity of n, we used
n¼ 180 for even n0, and n¼ 181 for odd n0.

* The systems whose E-values were compared were acyclic, and thus no cycle-
dependent or Kekul�ee-structure-dependent effect could be encountered.

* The systems whose E-values were compared had the same pattern of branching,
and the branching points were located sufficiently far from each other. By this
we achieved, as much as it was possible, that branching-dependent effects were
the same in all species considered.

* Because no other structural feature is known, that would significantly influence
the value of E, we anticipate that the energy-differences observed were caused
by the difference in the n0-values. The fact that species having same n0 have
almost coinciding E-values provides a strong argument in favor of this expecta-
tion. Another finding pointing at the same direction is the excellent linear cor-
relation between E and n0, which hardly could happen by mere coincidence.

In summary: we maintain that the results reported here are not restricted to the
peculiar molecular graphs of the type PN(j1, j2, . . . , jk), but to have a general valid-
ity. The regularity established can be formulated as follows:

Provided other effects are kept constant (which is not easy to achieve), the presence
of non-bonding molecular orbitals diminishes the total �-electron energy. The
effect of NBMOs is linearly proportional to the number of NBMOs.
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